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INTRODUCTION: Untreated prostate cancers rely
on androgen receptor (AR) signaling for growth
and survival, forming the basis for the initial
efficacy of androgen deprivation therapy (ADT).
Yet the disease can relapse and progress to a
lethal stage termed castration-resistant prostate
cancer (CRPC). Reactivation of AR signaling rep-
resents themost commondriver ofCRPCgrowth,
and next-generation AR signaling inhibitors
(ARSIs) are now used in combination with ADT
as a first-line therapy.However, ARSIs can result
in selective pressure, thereby generating AR-
independent tumors. The transition from AR
dependence frequently accompanies a change
in phenotype resembling developmental trans-
differentiation or “lineage plasticity.” Neuro-
endocrine prostate cancer, which lacks a
defined pathologic classification, is the most
studied type of lineage plasticity. However,
most AR-null tumors do not exhibit neuro-
endocrine features and are classified as
“double-negative prostate cancer,” the drivers
of which are poorly defined.

RATIONALE: Lineage plasticity studies in CRPC
are limited by the lack of genetically defined

patient-derived models that recapitulate the
disease spectrum. To address this, we devel-
oped a biobank of organoids generated from
patient biopsies to study the landscape of
metastatic CRPC and allow for functional
validation assays. Proteins called transcription
factors (TFs) are drivers of tumor lineage plas-
ticity. To identify the key TFs that drive the
growth of AR-independent tumors, we inte-
grated epigenetic and transcriptomic data
generated from CRPC models.

RESULTS: We generated ATAC-seq (assay for
transposase-accessible chromatin sequencing)
and RNA-seq data from 22 metastatic human
prostate cancer organoids, six patient-derived
xenografts (PDXs), and 12 derived or tradi-
tional cell lines. We classified the 40 mod-
els into four subtypes and predicted key
TFs of each subtype. We identified the well-
characterized AR-dependent (CRPC-AR) and
neuroendocrine subtypes (CRPC-NE) as well as
two AR-negative/low groups, including a Wnt-
dependent subtype (CRPC-WNT), driven by
TCF/LEF TFs, and a stem cell–like (SCL)
subtype (CRPC-SCL), driven by theAP-1 family

of TFs. We applied RNA-seq signatures de-
rived from the organoids to 366 patient sam-
ples from two independent CRPC datasets,
which recapitulated the four-subtype classi-
fication. We found that CRPC-SCL is the sec-
ond most prevalent group and is associated
with shorter time under ARSI treatment com-
pared to CRPC-AR. Additional chromatin immu-
noprecipitation sequencing (ChIP-seq) analysis
indicated that AP-1 works together with the
proteins YAP, TAZ, and TEAD, revealing YAP/
TAZ and AP-1 as potential actionable targets
in CRPC-SCL. Using overexpression assays in
AR-high cells, we revealed how AP-1 functions
as a pioneering factor andmaster regulator for
CRPC-SCL.

CONCLUSION: By using a diverse biobank of or-
ganoids, PDXs, and cell lines that recapitulate
the heterogeneity of metastatic prostate cancer,
we created amap of the chromatin accessibility
and transcriptomic landscape of CRPC.We val-
idated the CRPC-AR and CRPC-NE subtypes
and report two subtypes of AR-negative/low
samples as well as their respective key TFs.
Additional analysis revealed a model in which
YAP, TAZ, TEAD, and AP-1 function together
and drive oncogenic growth in CRPC-SCL
samples. Overall, our results show how strat-
ification of CRPC patients into four subtypes
using their transcriptomes can potentially
inform appropriate clinical decisions.▪

RESEARCH

Tang et al., Science 376, 960 (2022) 27 May 2022 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: ekk2003@med.cornell.edu
(E.K.); cheny1@mskcc.org (Y.C.)
†These authors contributed equally to this work.
Cite this article as F. Tang et al., Science 376, eabe1505
(2022). DOI: 10.1126/science.abe1505

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abe1505

Identification of four subtypes of castration-resistant prostate cancer (CRPC) by integration of chromatin accessibility and transcriptomic data from organoids,
patient-derived xenografts (PDXs), and cell lines. TF, transcription factor; AR, androgen receptor; NE, neuroendocrine; SCL, stem cell–like. YAP/TAZ/TEAD/AP-1 cooperation
in CRPC-SCL suggests actionable targets. Application of RNA-seq signatures derived from the models to 366 patient samples recapitulates the four-subtype classification.
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In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads
to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for
transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids,
six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent
and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype,
and a stem cell–like (SCL) subtype driven by activator protein–1 (AP-1) transcription factors. We
used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most
common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ
and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes
in this group. Together, this molecular classification reveals drug targets and can potentially guide
therapeutic decisions.

U
ntreated prostate cancers rely on andro-
gen receptor (AR) signaling for growth
and survival, forming the basis for the
initial efficacy of androgen deprivation
therapy (ADT). Yet the disease can re-

lapse and progress to a lethal stage termed
castration-resistant prostate cancer (CRPC).
Reactivation of AR signaling represents the
most common driver of CRPC growth, and
next-generationAR signaling inhibitors (ARSIs)
are now used in combination with ADT as a
first-line therapy (1). However, ARSIs can also
result in selective pressure, thereby generating
AR-independent tumors. The transition from
AR dependence frequently accompanies a
change in phenotype that resembles devel-
opmental transdifferentiation or “lineage plas-
ticity” (2). Neuroendocrine prostate cancer
(NEPC), which lacks a defined pathologic clas-
sification, is the most studied type of lineage
plasticity (3, 4). However,most AR-null tumors
do not exhibit neuroendocrine features and

are classified as “double-negative prostate can-
cer” (DNPC), the drivers of which are poorly
defined (5, 6).
Mechanistic studies in CRPC are limited by

the lack of genetically defined patient-derived
models that recapitulate the disease spectrum.
To address this, we have developed a biobank
of organoids generated from patient biopsies
to study the landscape ofmetastatic CRPC and
allow for functional validation assays (7, 8).

Biobank of patient-derived organoids
of metastatic CRPC

We generated and characterized 15 organoids
from specimens of patientswithmetastatic pros-
tate cancer (MSKPCa8-MSKPCa20, MSKPCa22,
MSKPCa24), adding to our biobank of seven
organoids (7, 8). In general, the organoids were
from patients with aggressive disease, short re-
sponse to initial ADT, and rapid progression
following second-line treatment with an ARSI
(table S1). In culture, the organoids adopted

histology similar to the tissues from which
they were developed (fig. S1, A and B), and the
neuroendocrine samples maintained immu-
nohistochemistry staining of synaptophysin
(SYP) (fig. S1C).
We generated mutational and copy number

profiles of each organoid, as well as 10 of 15
matching tumor biopsy specimens, using
MSK-IMPACT (Memorial Sloan Kettering–
Integrated Mutation Profiling of Actionable
Cancer Targets) (9). The copy number land-
scape was similar between tumors and organ-
oids and was representative of metastatic
CRPC when compared to the Stand Up to Can-
cer (SU2C) cohort (10) (Fig. 1A). We observed a
mean of 3.6 somatic mutations per patient,
similar to the cohort of metastatic prostate
cancer patients profiled using MSK-IMPACT
(9) (Fig. 1B). The majority of organoids exhib-
ited the same copy number variations (CNVs)
and single-nucleotide variants (SNVs) as the
original biopsies (fig. S1D and tables S2 and
S3). In fact, organoids contained a higher frac-
tion of tumor cells than the original biopsies,
as shown by the increased allelic frequency of
SNVs and CNVs (Fig. 1A and table S2).

Chromatin accessibility landscape reveals
four molecular subtypes of metastatic
prostate cancer

We performed ATAC-seq (assay for transposase-
accessible chromatin sequencing) assays for
35 metastatic prostate cancer models, includ-
ing 22 patient-derived organoids, six patient-
derived xenografts (PDXs), and seven cell lines
(two biological replicates for each) (fig. S2, A to
E, and table S4). We also included published
ATAC-seq data from five NEPC models (11)
(Fig. 1C). Overall, we identified 861,195 repro-
ducible peaks. The majority of the ATAC-seq
peaks mapped to distal intergenic and intronic
regions, similar to reports by other groups (12)
(Fig. 1C). We identified four CRPC subtypes
using consensus k-means clustering on the
regions showing the most variable accessi-
bility (fig. S2, F to H). We obtained the same
four groups using other approaches, such as
hierarchical clustering and UMAP (uniform
manifold approximation and projection) (Fig. 1,
D and E). There was no significant difference
between the numbers of peaks among the four
subtypes (fig. S2I, two-sidedWilcoxon rank-sum
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Fig. 1. Classification of metastatic prostate cancer into four molecular
subtypes from chromatin accessibility. (A) Top: Genomic aberrations
in the prostate oncogenome from the SU2C CRPC patient samples (10)
and MSKPCa organoids. Bottom: Copy number landscape of the 15 patient-
derived organoid lines and 10 matching tumor tissues using MSK-IMPACT
sequencing data. Shades of red and blue represent extent of gain and loss.
(B) Number of mutations and fraction of copy number–altered genome
of the 10 organoids and their matching patient tumor tissues. (C) Feature

distribution of the mapped ATAC-seq peaks across all samples. (D) Correlation
heatmap based on the normalized number of reads of the top 1% variable
peaks across all samples. The ATAC-seq group and the sample source are
indicated for each sample. The colors of the four ATAC-seq groups are kept
consistent throughout the paper. (E) Unsupervised UMAP on the top 1%
variable accessible peaks across all samples. (F) Immunoblot showing the
expression of AR, SYP, and GAPDH (control) across the 35 organoids, PDXs,
and cell lines.
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test). The signature peaks for each subtype,
defined as those with log2(fold change) > 2
and P < 0.01, were enriched at enhancers rela-
tive to promoters (P = 4.18 × 10–126, one-tailed
Fisher’s exact test), consistent with reports that
the enhancer landscape better reflects cell iden-
tity than promoter accessibility (table S5) (13).
One of the four subtypes consisted of high

AR-expressing samples, including the cell lines
LNCaP, VCaP, 22Rv1, and C4-2; the organoids
MSKPCa2, MSKPCa19, and MSKPCa22; and
five PDXs (Fig. 1F). All these samples showed
increased chromatin accessibility at AR target
genes such as KLK2 (fig. S2J). Another sub-
type included published NEPC samples H660,
WCM154, PARCB1, PARCB3, PARCB6, PARCB8,
and MSKEF1 (a derivative of published neuro-
endocrineorganoidMSKPCa4); threeneworgan-
oid lines,MSKPCa10,MSKPCa14, andMSKPCa24;
and one PDXmodel with high SYP expression
and small-cell carcinoma phenotype (Fig. 1F and
fig. S1, A and C). The remaining two subtypes
consisted of neuroendocrine-negative (NE-
negative) and AR-negative/low samples (Fig. 1,
E and F). For further biological characteriza-
tion, we integrated the ATAC-seq data with
RNA-seq and DNA sequencing data.

Transcriptomic profiles of the
four CRPC subtypes

We next analyzed the transcriptomes of the
40 samples using UMAP and found that the
clusters agree with the subtypes identified
using ATAC-seq (Fig. 2A). Gene set enrich-
ment analysis (GSEA) and selective marker
gene expression (Fig. 2, B and C, and fig. S3, A
to C) were used to name the four subtypes as
follows: (i) CRPC-AR, which is enriched in the
AR signature (14); (ii) CRPC-WNT, which is
enriched in Wnt signaling and includes the
organoids WCM1078, WCM1262, MSKPCa1,
and MSKPCa16; (iii) CRPC-NE, which is en-
riched in the NE signature (15) in agreement
with the pathology classification (fig. S1, A
andC) and has high expression ofNEmarkers,
including SYP, CHGA, and DLL3; and (iv)
CRPC-SCL, consisting of stem cell–like (SCL)
samples, including 11 organoids and cell lines
DU145 and PC3.
CRPC-SCL has not been previously identi-

fied. Samples in this subtype were enriched in
the mammary stem cell signature, with high ex-
pression of the cancer stem cell markers CD44
and TACSTD2 (TROP2A) (Fig. 2, B and C, and
fig. S3, A andB). Samples inCRPC-SCLwere also
enriched in pathways involving interleukin-6/
Janus kinase/signal transducer and activator of
transcription 3, transforming growth factor–b,
tumor necrosis factor–a signaling, epithelial-
mesenchymal transition, inflammation, and
interferon response (fig. S4A).
Relative to CRPC-AR, the other three groups

were enriched with a basal signature (16) and
prostate basal stem cell signature (17), with

CRPC-SCL exhibiting the highest enrichment
score (fig. S4B) and expression of basal cell
markers (Fig. 2C). In addition, consistent with
previous studies of AR-negative/low tumors,
CRPC-WNT and CRPC-SCL showed enrich-
ment of fibroblast growth factor receptor
(FGFR) signaling and expression of selective
FGF ligands and receptors compared to the
other two groups (fig. S5, A and B) (5).

Genomic characterization and loss of tumor
suppressors in the four CRPC subtypes

Samples in CRPC-AR were enriched for AR
amplification and/or AR mutation (Fig. 2D;
P = 7.01 × 10–6, one-tailed Fisher’s exact test). In
CRPC-WNT, all four samples showed alterations
in theWnt signaling pathway (18) (Fig. 2D and
fig. S5C). Three CRPC-WNT samples showed
hot spot mutations in CTNNB1 (b-catenin)
(Fig. 2D and fig. S5C). The fourth sample had
shallow deletion of APC and gain of RSPO2
(18) (fig. S5C).
Loss of the tumor suppressors TP53, PTEN,

and RB1 is associated with lineage plasticity
and aggressive disease in CRPC (16, 19). We
found that TP53 was the most frequently mu-
tated gene, with putative driver mutations or
deep deletions in 23 of 35 samples (66%) across
all four groups. RB1 and PTEN had biallelic
alterations in 20% and 43% of samples, re-
spectively (Fig. 2D and fig. S5D). Using RNA-
seq and immunoblot analysis, we found that an
additional 11 of 35 samples (31.4%) exhibited
RB1 loss, and 10 of 35 samples (28.5%) exhib-
ited PTEN loss (table S6 and figs. S5E and S6).
Overall, we found an enrichment of RB1 loss in
AR-negative/low samples (14 of 24) compared
to CRPC-AR (2 of 12) (P = 0.0200, one-tailed
Fisher’s exact test); there was no statistical dif-
ference in PTEN and TP53 alterations between
CRPC-AR and others. AR-independent CRPC
has worse prognosis, and thus these results
agree with recent studies indicating that RB1
alterations, but not TP53 and PTEN altera-
tions, are associated with shorter survival in
CRPC (20, 21). It is notable that although 11
of 24 lines exhibited loss of both TP53 and
RB1 in the AR-negative/low samples, only three
were overtly NEPC (fig. S1, A to C), consistent
with recent observations that loss of TP53
and RB1 in prostate carcinoma attenuates AR
signaling but does not uniformly induce the
neuroendocrine phenotype (22). This fur-
ther highlights the importance of transcrip-
tomic and epigenetic analysis in defining CRPC
subtypes.

Construction of regulatory networks
and identification of key TFs

To identify the key TFs that drive the subtype-
specific transcriptome, we first identified the
hubs in regulatory networks that target a large
number of genes in a given sample (23). We
constructed regulatory networks by integrat-

ing ATAC-seq and RNA-seq data, and built the
peak-gene links based on the correlation be-
tween chromatin accessibility at ATAC-seq
peaks and expression of genes within ±0.5 Mb
(Fig. 3A, step 1) (12, 24). In total, we identified
at least one peak-gene link for 4752 protein-
coding genes (table S7). We predicted that
75.2% of the peaks regulate only one gene, and
on average the expression of one gene was cor-
related with the activity of three peaks (Fig. 3,
B and C). To uncover TF-DNA binding sites in
the accessible regions, we used a footprinting
method called HINT-ATAC (Hmm-based iden-
tification of TF footprints using ATAC-seq) and
a curated collection of sequence-bindingmotifs
for 809 TFs from CIS-BP (Fig. 3A, step 2) (25).
By combining peak-gene and TF-peak links, we
constructedTF-gene links and generated sample-
specific regulatory networks (Fig. 3A, steps 3
and 4). We define TF out-degree as the number
of target genes a given TF regulates in the net-
work (fig. S7).
Next, we identified the key TFs for each sub-

type as those at the top of the gene regulation
hierarchy (Fig. 3D and table S8). Each TF is
ranked according to a combination of three
metrics: (i) its differential out-degree O_diff
(fig. S8A), (ii) its differential chromatin acces-
sibility at its motifs A_diff (fig. S8B), and (iii)
its differential gene expression E_diff in a
given subtype relative to others (Fig. 3D). We
assigned ranks to the TFs independently on
the basis of the three metrics and added up
the three ranks to get the final TF_rank.
In CRPC-AR, AR and FOXA1 were the top

two TFs, validating our approach (26, 27). In
CRPC-NE, the top two TFs were neurogenic dif-
ferentiation factor 1 (NEUROD1) and achaete-
scute homolog 1 (ASCL1). NEPC and small-cell
lung cancer (SCLC) have been shown to be
similar at the phenotypic and molecular level,
and ASCL1 and NEUROD1 have been demon-
strated to be the main drivers in SCLC (11, 28).
In CRPC-WNT, transcription factor 7–like 2
(TCF7L2)was thehighest-rankedTF.Alsoknown
as TCF-4, TCF7L2 has been shown to be the key
driver in colorectal cancer upon upstream Wnt
pathway gene alterations such as APC muta-
tions (29). Other TCF and lymphoid enhancer
binding factor (LEF) TFs were also among the
top candidates, including LEF1/LEF, TCF7/
TCF-1, and TCF7L1/TCF-3. UponWnt pathway
activation, b-catenin translocates to the nu-
cleus and coactivates TCF/LEF to promote the
expression of downstream genes (29).
In CRPC-SCL, we identified the AP-1 family

among the top TFs, with FOSL1 having the
highest rank. AP-1 is a TF complex assembled
through homo- or heterodimerization of mem-
bers of the Fos and Jun family (30). The Fos
family includes FOSL1, FOSL2, FOS, and FOSB,
whereas the Jun family includes JUN, JUNB,
and JUND. AP-1 has been shown to be activated
by multiple upstream signals, including growth
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factors, hormones, cytokines, inflammation, and
stresses. It controls the expression of many
downstream genes related to cell division,
apoptosis, cell migration, and immunity (30).
In addition to subtype-specific TF identi-

fication, we also predicted the important TFs

in a sample-specific manner. To do this, we
analyzed all TFs’ relative expression and chro-
matin accessibility at their motifs for samples
in CRPC-WNT, CRPC-NE, and CRPC-SCL, and
compared these to the average for CRPC-AR
samples. This analysis demonstrated that the

key TFs identified in a subtype-specific man-
ner agree with the sample-specific results (fig.
S9). We also found significant correlation be-
tween the expression of key TFs and acces-
sibility at their motifs, which suggests that
they likely exhibit pioneering activity (fig. S10,
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Fig. 2. Transcriptomic and genomic characterization of the four CRPC
subtypes defined by ATAC-seq. (A) Unsupervised UMAP on the mRNA
expression values of the 1000 most variably expressed genes across
all samples. (B) Enrichment scores and P values from GSEA indicate that
the four signals are significantly positively enriched in specific subtypes but not
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marker genes and basal/luminal genes across all samples. The ATAC-seq

group and signature scores of the four representative pathways for each
sample are shown at the top. (D) OncoPrint shows the genomic alterations of
the 35 samples with DNA-sequencing data. MSKPCa8 to 20, 22, and 24
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adjusted P < 0.05) (12). Finally, the relative
expression levels of predicted key TFs in
each of the four groups were confirmed by a
quantitative polymerase chain reaction (qPCR)
(fig. S3C).

Classification of CRPC patients using
transcriptomic signatures of the four subtypes
Next, we examined RNA-seq datasets from
366 CRPC patients to assign each patient to
the four subtypes (21). We derived the sig-

nature genes for each of the four subtypes
as the ones with higher expression in one
group relative to others in organoids and cell
lines, and filtered out genes with low expres-
sion or low variance in CRPC patient samples
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Fig. 3. Identification of the key transcription factors (TFs) of each subtype. (A) Schematic illustrating the construction of sample-specific regulatory networks
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(tables S5 and S9). A template was constructed
for each subtype by combining the top signa-
ture genes. To assign the CRPC patient sam-
ples to a subtype, we used the nearest template

prediction (NTP) algorithm (31, 32), which in-
volves computing the cosine distance (d) be-
tween each patient’s RNA-seq data and each of
the four templates and estimating the statistical

significance by randomresampling (Fig. 4A).We
applied the method to two cohorts of CRPC
patients with polyA-enriched RNA-seq data,
including 266 published SU2C patients (21)
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and 100 patients sequenced at Weill Cornell
Medicine (WCM) (Fig. 4B). Themajority of the
patients (206 of 266 SU2C, 82 of 100 WCM)
were assigned to one of the four subtypes (table
S10). The relative ratios of the four subtypes of
patients were similar between cohorts, with
the largest group being CRPC-AR, then CRPC-
SCL or CRPC-NE, and finally CRPC-WNTas the
smallest (Fig. 4C). For WCM1078, WCM1262,
WCM155, and MSKPCa2 organoids, RNA-seq
data were available frommatching tumor sam-
ples, which were assigned to the same subtype
as the organoids (table S10).
As a complementary approach, we devel-

oped a linear SVM (support vector machine)
using the gene expression data of the signa-
ture genes. Patients were assigned to the four
subtypes on the basis of the highest probability
from SVC (C-support vector classification).
Application of the model to patients’ RNA-
seq data showed that for most subtypes, the
mean probability of patient assignment to
that subtype was ≥0.50 (table S10), indicat-
ing confident assignment to one group. The
majority of samples were assigned the same
subtype with either NTP or SVM (92% of WCM
and 85% of SU2C samples). The samples unas-
signed by NTP tended to show more heteroge-
neity based on SVM (lower highest probabilities
compared to the assigned, P = 4.36 × 10–6 for
WCMand 1.73 × 10–6 for SU2C,Wilcoxon rank-
sum test) and a tendency toward CRPC-SCL
(P = 0.033 for WCM and 0.00029 for SU2C,
Fisher’s exact test), potentially pointing to
transition to/via this subtype.
The genomic alterations, marker gene ex-

pression, and pathologic analysis provided
validation of patient classification. CRPC-AR
patients showed enrichment of AR amplifi-
cation (Fig. 4D and fig. S11A) and had higher
AR expression and AR score (Fig. 4B and fig.
S11, B andC) compared to other groups. CRPC-
NE patients had higher SYP expression and
NE score (21) (fig. S11, B and C) compared to
others, and their genotypes were enriched
with RB1 deep deletion (Fig. 4D and fig. S11A).
The majority of patients in this class were also
diagnosed as having either small-cell, NEPC, or
adenocarcinoma with NE features on the basis
of histology analysis (Fig. 4B). Patients in
CRPC-WNTshowedelevatedexpressionofAXIN2
(fig. S11B) and an enrichment of mutations of
Wnt pathway components (Fig. 4D and figs.
S11A and S12A). We observed increased expres-
sion of the stem cell marker CD44 in CRPC-SCL
patients (fig. S11B) compared to others, as ex-
pected, but no consistent enrichment of gene or
pathway alterations at the genomic level (figs.
S11A and S12B). Moreover, consistent with the
results in the 40 models, we found an enrich-
ment of basal signature in the three AR-low/
negative groups relative to CRPC-AR (fig. S12C).
Among the 266 SU2C patients, 56 had time-

on-treatment data for the next-generation ARSIs

enzalutamide and abiraterone acetate.We found
that patients classified as CRPC-SCL exhibited
shorter time on ARSI treatment using Cox log-
rank statistics (Fig. 4E), indicating that the ARSI
treatments were less effective for CRPC-SCL pa-
tients. We could not compare the time on ARSI
treatment for CRPC-AR or CRPC-SCL to other
subtypes because therewere fewer than five sam-
ples for CRPC-WNT and CRPC-NE (table S11).

AP-1 cooperates with YAP, TAZ, and TEAD
in CRPC-SCL

The proportion of patients classified as CRPC-
SCL was the second largest in the combined
SU2C and WCM cohorts (28%) (Fig. 4C and
table S10); thus, we further explored samples
in this subtype. We focused on MSKPCa3, an
AR-low organoid, and DU145, an AR-negative
cell line, as CRPC-SCL models for experimen-
tal validations.
We identified an AP-1 familymember, FOSL1,

as the top candidate key TF for CRPC-SCL (Fig.
3D). Expression of various AP-1 components
across the four subtypes confirmed FOSL1 as
the AP-1 gene with highest relative expression
in CRPC-SCL samples compared to others (fig.
S13A), whereas it was barely detectable in CRPC-
AR samples at mRNA and protein levels (fig.
S13, A and B). To directly assess the importance
of FOSL1 for tumor growth, we performed cell
competition assays in MSKPCa3 and DU145,
with CRPC-AR organoid MSKPCa2 as a control.
We transduced the cells with constructs con-
taining green fluorescent protein (GFP), Cas9,
and single guide RNAs (sgRNAs) against FOSL1,
RPA3 (positive control), or Rosa26 (negative
control) and monitored the relative proportion
of GFP-positive sgRNA-expressing cells over
timeby fluorescence-activatedcell sorting (FACS)
(fig. S13C). Depletion of GFP-positive sgFOSL1
was observed in bothMSKPCa3 and DU145, but
not in MSKPCa2, supporting our prediction
that FOSL1 is important for tumor progression
in CRPC-SCL (Fig. 5A and fig. S13, D and E).
TFswork together and bind cooperatively in

a context-specific manner to achieve specific-
ity and execute their functions (33). Thus, to
further investigate the regulation of CRPC-
SCL samples by AP-1, we investigated the other
top TFs identified from chromatin accessibility
profiles. We found that TEAD motifs were the
second most enriched after AP-1 in the CRPC-
SCL–specific accessible peaks (fig. S14A) and
they ranked highly on the basis of the gain of
chromatin accessibility and out-degree in
CRPC-SCL samples (fig. S14B). TEAD TFs are
activated by YAP and TAZ transcriptional
coactivators (34). In fact, motif analysis of the
chromatin immunoprecipitation sequencing
(ChIP-seq) peaks of YAP and TAZ has revealed
that TEAD TFs are the main platform by which
these proteins interact with DNA (34). TEAD,
YAP, and TAZ were reported to be associated
with AP-1 genome-wide to jointly regulate the

proliferation and motility in multiple cancers,
including breast, colorectal, and lung (35). In
addition, TAZ (WWTR1) is among the top genes
codependent with FOSL1 based on CRISPR
(Avana) Public 20Q2 in DepMap (36) with a
Pearson correlation of 0.33, further supporting
the model in which FOSL1 functions together
with YAP and TAZ. From ATAC-seq data and
published literature, we hypothesized that YAP,
TAZ, TEAD, and AP-1 (FOSL1) may function
together to promote the oncogenic growth of
CRPC-SCL tumors (Fig. 5B). This is supported
by our observation that GSEA using the com-
bined YAP and TAZ (YAP/TAZ) target signature
as defined in (37) revealed strong enrichment
[false discovery rate (FDR) < 0.001] in CRPC-
SCL compared to other samples (Fig. 5C). CRPC-
SCL also showed significantly higher expression
of YAP and TAZ (fig. S14C; P < 0.05, Wilcoxon
rank-sum test), and qPCR analysis of represen-
tative YAP/TAZ target genes across the 28 sam-
ples showed their high expression in this group
(fig. S14D).
To validate the co-binding of AP-1 (FOSL1),

TEAD, YAP, and TAZ, we performed ChIP-seq
in MSKPCa3 andDU145.We found significant
enrichment of overlaps between the ChIP-seq
peaks of these proteins in both MSKPCa3 and
DU145, pointing to their cooperation (Fig. 5, D
and E, fig. S15, A and B, and table S12; P <
0.001, Fisher’s exact test). We also found sig-
nificant overlap between the target genes of
AP-1 and TEAD predicted in our regulatory net-
works (fig. S15C; P < 0.001, Fisher’s exact test).
We found that the ChIP-seq peaks of all

these four proteins exhibit large overlap with
CRPC-SCL ATAC-seq peaks, but barely any with
CRPC-AR peaks (Fig. 5F and figs. S15D and S16).
Correspondingly, we also observed a strong en-
richment of the ChIP-seq signal over CRPC-
SCL–specific ATAC-seq peaks relative to the
other three subtypes (Fig. 5F and fig. S16; P <
0.0001, one-sided Fisher’s exact test). As a
negative control, the trend was opposite for
AR ChIP-seq peaks, in which they showed
much larger overlap and signal enrichment at
CRPC-AR peaks compared to CRPC-SCL, as
expected (Fig. 5F and fig. S16; P < 0.0001, one-
sided Fisher’s exact test) (38, 39). For example,
the ChIP-seq and ATAC-seq profiles illustrated
open chromatin and binding of AP-1, YAP,
TAZ, and TEAD at enhancers of the represen-
tative YAP/TAZ target genes, CYR61 and AXL,
in CRPC-SCL lines; the same loci were barely
accessible in other groups (figs. S17 and S18).
To determine the role of YAP and TAZ in

growth, we used small interfering RNA (siRNA)
to knock down YAP and TAZ alone or together
in MSKPCa3 and DU145 cells (Fig. 6, A and
B, and fig. S19, A and B; P < 0.05, two-tailed
unpaired t test). We observed a significant de-
crease of cell growth upon TAZ and YAP/TAZ
double knockdown inbothMSKPCa3andDU145
but not in the AR-dependent lines MSKPCa2
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and 22Rv1 (Fig. 6C and fig. S19C; P < 0.0001,
two-tailed unpaired t test).

AP-1 and YAP/TAZ are important for
subtype-specific chromatin accessibility
and gene expression in CRPC-SCL and can
be targeted by drugs

Knockdown of FOSL1 and YAP/TAZ shows impact
on chromatin accessibility and gene expression

We performed ATAC-seq and RNA-seq in
MSKPCa3 cells with knockdown of FOSL1,
YAP, TAZ, and YAP/TAZ together. We observed
a significant decrease of chromatin accessibility
at the CRPC-SCL–specific open chromatin sites
as well as at regions bound by FOSL1, TEAD,
YAP, and TAZ fromChIP-seq upon FOSL1,YAP,
and YAP/TAZ knockdown (Fig. 6, D and E, and
fig. S20) (P < 0.001, permutation test). The sig-
nal was strongest upon FOSL1 and doubleYAP/
TAZ knockdown and highlights their impor-
tant role in maintaining the chromatin acces-
sibility landscape for the CRPC-SCL group. In
agreement with the decrease in chromatin ac-
cessibility, we found that CRPC-SCL peaks
are the most enriched among down-regulated
ATAC-seq peaks upon FOSL1, YAP, and YAP/
TAZ knockdown (table S13). Moreover, we
found that the TEAD and AP-1 motifs are the
most enriched at the regions where chromatin
accessibility is reduced upon YAP/TAZ double
knockdown, further confirming the model in
which YAP and TAZ cooperate with AP-1 and
TEAD (fig. S21A). Consistent with ATAC-seq
results, we found down-regulation of YAP/
TAZ targets in RNA-seq data in all knock-
down assays (Fig. 6F and fig. S21B). Double
knockdown of YAP and TAZ showed stron-
ger inhibition of canonical downstream tar-
gets (CTGF, CYR61, AJUBA, and ANKRD1) and
cell cycle–regulating gene CCND1 (Fig. 6A and
fig. S19A), which have been reported as YAP/
TAZ targets in various model systems, rela-
tive to individual knockdown of YAP or TAZ
(35, 40). Althoughwe also observed enrichment
of CRPC-SCL genes among the down-regulated
genes, their enrichment in the up-regulated
gene set showed that ATAC-seq changes are
likely a more meaningful marker to analyze
lineage plasticity, as also demonstrated by pre-
vious studies (table S14) (41). Similar chromatin
accessibility and gene expression changes were
observed upon YAP, TAZ, and YAP/TAZ knock-
down in DU145 (figs. S21, C and D, and S22).

Positive feedback loop between YAP/TAZ
and FOSL1

We found that YAP/TAZ double knockdown
caused robust depletion of FOSL1, the pre-
dicted master TF, at RNA and protein levels
in both MSKPCa3 and DU145 (Fig. 6, A and B,
and fig. S19, AandB).Moreover, in our regulatory
networks for CRPC-SCL samples, FOSL1 was
predicted to be a target of FOS/JUN itself as
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Fig. 5. AP-1 works together with YAP, TAZ, and TEAD in CRPC-SCL. (A) Percentage of GFP-positive
MSKPCa3 (left) or MSKPCa2 (right) expressing CRISPR guides against FOSL1 or sgR26 (negative control) or
sgRPA3 (positive control). Mean ± SEM, n = 2 for MSKPCa3, n = 2 for MSKPCa2. ***P < 0.001, **P < 0.01,
*P < 0.05 [multiple unpaired t test comparing between passages (p1 versus p0, p2 versus p0, p3 versus p0)].
Knockout of FOSL1 was confirmed in MSKPCa3 by Western blot. (B) Schematic showing the cooperation of
AP-1 with YAP/TAZ and TEAD in CRPC-SCL samples. (C) GSEA plot showing enrichment of YAP/TAZ signature in
CRPC-SCL organoids and cell lines compared to other samples. (D) Venn diagram showing the overlaps of FOSL1,
TEAD, YAP, and TAZ ChIP-seq peaks in MSKPCa3. Overlaps with more than 1000 peaks are marked, and those
between YAP/FOSL1 (48 peaks) and YAP/FOSL1/TEAD (4 peaks) are not shown. (E) ChIP-seq signal of FOSL1,
TAZ, TEAD1, and YAP in MSKPCa3, and AR (GSE61852) from LNCaP on the consensus peak set. (F) ChIP-seq signal
of FOSL1, TAZ, TEAD1, and YAP in MSKPCa3, and AR (GSE61852) from LNCaP on subtype-specific ATAC-seq
peaks. FOSL1, TEAD1, YAP, and TAZ ChIP-seq peaks for MSKPCa3 show stronger signal at CRPC-SCL–specific
ATAC-seq peaks, whereas AR (GSE61852) ChIP-seq peaks have stronger signal in CRPC-AR–specific peaks.
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Fig. 6. Impact of FOSL1, YAP, TAZ, and YAP/TAZ knockdown. (A) qPCR
showing that double knockdown of YAP/TAZ by siRNA in MSKPCa3 leads to
decreased expression of downstream target genes and FOSL1. Mean ± SD,
n = 3. Nontargeting (NT) siRNA serves as the negative control. ****P <
0.0001, **P < 0.01, *P < 0.05 (two-tailed unpaired t test); KD, knockdown.
(B) Western blot (WB) confirming the knockdown efficiency and the decrease
of FOSL1 expression 72 hours after transfection in MSKPCa3. (C) Cell
growth curves of MSKPCa3 and MSKPCa2 after siRNA knockdown. Mean ± SD,

n = 8 for MSKPCa3, n = 4 for MSKPCa2. ****P < 0.0001, **P < 0.01 (two-
tailed unpaired t test). (D) Chromatin accessibility changes upon FOSL1, TAZ,
YAP, and YAP/TAZ knockdown at CRPC-AR and CRPC-SCL peaks. (E) Average
percentage of chromatin accessibility changes upon FOSL1, TAZ, YAP, and
YAP/TAZ knockdown compared to control at CRPC-AR and CRPC-SCL peaks.
***P < 0.001 (permutation test). (F) GSEA plots showing negative enrichment
of YAP/TAZ target genes in MSKPCa3 upon knockdown of FOSL1, TAZ,
YAP, and YAP/TAZ.

RESEARCH | RESEARCH ARTICLE

Corrected 7 February 2023. See full text.

D
ow

nloaded from
 https://w

w
w

.science.org at C
ornell U

niversity on O
ctober 19, 2023

https://www.science.org/doi/10.1126/science.abe1505


well as TEAD,which cooperates with FOSL1 in
our proposedmodel, similar to observations in
other cancers (35). Using ChIP-seq data, we
also found that the CRPC-SCL–specific FOSL1
enhancer is bound by TEAD, YAP, TAZ, and
FOSL1 (fig. S23). Together, the results sug-
gest that YAP, TAZ, TEAD, and FOSL1 increase
the expression of FOSL1 itself, forming a posi-
tive feedback loop to further open chromatin
(fig. S24A).

Exogenous expression of FOSL1 alters
chromatin accessibility and gene expression
from CRPC-AR toward CRPC-SCL

To determine whether FOSL1 could alter the
chromatin accessibility landscape and acti-
vate the CRPC-SCL signature, we stably ex-
pressed FOSL1 alone or in combination with
YAP or TAZ in LNCaP cells. We observed an
increase in chromatin accessibility at CRPC-
SCL–specific open chromatin sites in all as-
says with exogenous expression of FOSL1,
providing evidence of its role as a pioneer-
ing factor in potential lineage plasticity (Fig.
7, A and B; P < 0.001, permutation test). We
also observed a decrease in chromatin acces-
sibility at CRPC-AR–specific open chromatin
sites in all FOSL1 overexpression assays, fur-
ther pointing toward lineage transformation
(Fig. 7, A and B; P < 0.001, permutation test).
The RNA-seq results were consistent with
ATAC-seq results, and we observed signif-
icant up-regulation of CRPC-SCL signature
genes with FOSL1 overexpression, either alone
or with YAP or TAZ (Fig. 7C and fig. S24B,
FDR < 10–5).

Small-molecule inhibitors for CRPC-SCL

We used two small-molecule inhibitors that act
on the YAP/TAZ/AP-1 pathway for their poten-
tial use as therapeutics for CRPC-SCL tumors.
Verteporfin is a benzoporphyrin derivative
and a medication used as a photosensitizer
approved by the FDA for the treatment of
age-related macular degeneration. It has been
widely reported to inhibit YAP/TAZ and cel-
lular proliferation of multiple tumors (42).
Consistent with the role of YAP/TAZ in CRPC-
SCL, we found that MSKPCa3 and DU145 cells
were more sensitive to verteporfin than were
MSKPCa2 and 22Rv1, respectively (Fig. 7D
and fig. S24, C and D). T-5224 is a c-Fos/AP-1
inhibitor, specifically affecting the DNA bind-
ing activity of c-Fos/c-Jun and under clinical
trial for use in other cancers and diseases (43).
We found that T-5224 inhibitedMSKPCa3 and
DU145 cell growth in a dose-dependent fashion,
whereas it hadno effect onMSKPCa2 and22Rv1
(Fig. 7E and fig. S24, D and E).

The YAP/TAZ pathway is enriched
in CRPC-SCL patients

Finally, we examined YAP/TAZ activity in tran-
scriptomic data fromCRPC patients from both

SU2C and WCM. YAP/TAZ pathway activity
(sum of z-scores) was significantly higher in
CRPC-SCL patients relative to all samples (Fig.
7F; P < 0.01, one-tailed Wilcoxon rank-sum
test), with higher expression of YAP, TAZ, and
representative downstream genes (fig. S25A).
We also observed a significant negative corre-
lation between AR expression and YAP/TAZ
pathway activity across all SU2C samples (Fig.
7G and fig. S25B; P < 0.001).

Discussion

We used a diverse biobank of organoids and
PDXs that recapitulate the genotypic and
phenotypic heterogeneity of metastatic pros-
tate cancer to generate amap of the chromatin
accessibility and transcriptomic landscape of
CRPC. In so doing, we validated the CRPC-AR
and CRPC-NE subtypes and identified two
subtypes of AR-negative/low samples. Our
integrated use of ATAC-seq and RNA-seq data
allowed us to identify the master TFs driving
AR-negative/lowCRPCs. Previous studies using
only RNA-seq data could not identify these
drivers because GSEA identifies numerous
biological processes that are enriched among
CRPC-SCL samples (fig. S4A), complicating ef-
forts to find driver events. Furthermore, our
work shows that CRPC-SCL constitutes the
secondmost prevalent group of CRPC patients,
exhibits lower AR expression and AR tran-
scriptional output, and is associated with
shorter time under ARSI treatment compared
to CRPC-AR.
Integrated analysis of ATAC-seq, RNA-seq,

and ChIP-seq data revealed a model in which
YAP, TAZ, TEAD, and AP-1 function together
and drive oncogenic growth in CRPC-SCL
samples. We validated this with CRISPR and
depletion studies using siRNA knockdown.
From overexpression assays in AR-high LNCaP
cells, we showed how FOSL1 functions as a
pioneering factor and master regulator for
CRPC-SCL. This model reveals potential ther-
apeutic vulnerabilities in CRPC-SCL tumors by
inhibition of the YAP/TAZ/AP-1 pathway.
Prior studies support these conclusions. For

example, the Wnt pathway has been identi-
fied as a driver of metastasis and resistance
to AR-targeted therapies (44, 45). Furthermore,
knocking down TAZ in DU145 (CRPC-SCL
from our study) decreased cell migration and
metastasis, whereas overexpression of TAZ in
RWPE (normal prostate cells) promoted cell
migration, epithelial-mesenchymal transition,
and anchorage-independent growth (46). Over-
expression of YAP has been reported to promote
cell proliferation, invasion, and castration-
resistant growth in LNCaP and RWPE (47).
In addition, YAP/TAZ activation has been
found to be related to cell proliferation, the-
rapy resistance, and metastasis in various
other tumor types by extensive rewiring of
the epigenome of differentiated cells, reprog-

ramming them into stem-like cells and con-
ferring lineage plasticity (34, 35). These lines of
evidence along with those from our study
show the importance of AP-1, YAP, and TAZ
in the generation and maintenance of the
chromatin and transcriptomic landscape in a
specific subtype of CRPC.
Enrichment of basal signature, such as we

saw in CRPC-SCL organoids and patient sam-
ples, has been observed in prostate cancer cell
lines after depletion of TP53 and RB1 (16, 19)
and is also observed in models of DNPC
derived fromAR knockout of luminal prostate
cancer cells (5). This suggests that CRPC-SCL
tumors acquire lineage plasticity similar to
NEPC but are driven by different master TFs,
resulting in a different phenotype. Because
CRPC-SCL tumors are pathologically adeno-
carcinoma without neuroendocrine features,
our study may guide the use of ARSIs in these
cases. However, this requires further detailed
mechanistic studies of lineage transformation
and heterogeneity among the four subtypes.
Moreover, future in vivo studies over longer
time periods are needed to provide further
insights about the efficacy and specificity of
small molecules that target this subtype. Al-
though we showed the differential impact of
verteporfin on CRPC-SCL versus CRPC-AR sam-
ples, its YAP-independent effects may limit
its clinical potential (48, 49). Meanwhile,
other AP-1 inhibitors not tested in this study
may show high clinical potential for CRPC-
SCL (50). Overall, we have shown how an ap-
proach to stratify CRPC patients into four
subtypes using their transcriptomic signa-
tures can potentially inform appropriate clin-
ical decisions.

Methods summary

ATAC-seq and RNA-seq data were generated
for 35 metastatic prostate cancer models, in-
cluding 22 organoids, six PDXs, and seven
cell lines. Together with five more derived
CRPC cell lines from Park et al. (11), we uni-
formly processed ATAC-seq and RNA-seq data
from 40 models. The ATAC-seq data were used
to cluster the samples and revealed four sub-
types. We generated gene signatures of the
four epigenetically defined subgroups using
RNA-seq data. These gene signatures were
used to classify 366 CRPC patient samples.
Moreover, we constructed regulatory networks
for the models using a correlation-based method
connecting ATAC-seq peaks to gene expres-
sion and a footprint-based method for TF to
regulatory element connections. Key TFs for
each subgroup were identified using a metric
integrating regulatory network, ATAC-seq,
and RNA-seq features. The proposed coop-
eration between key TFs and other proteins
was validated using ChIP-seq. The impact
of FOSL1, YAP, and TAZ on subtype-specific
chromatin accessibility and gene expression
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Fig. 7. Evidence of the role of AP-1, YAP, and TAZ in CRPC-SCL from
overexpression, small-molecule inhibition, and patient transcriptome
findings. (A) Chromatin accessibility changes upon FOSL1, TAZ/FOSL1,
TAZ, YAP/FOSL1, and YAP overexpression in LNCaP cells at CRPC-AR and
CRPC-SCL peaks. (B) Average percentage of chromatin accessibility changes
upon FOSL1, TAZ/FOSL1, TAZ, YAP/FOSL1, and YAP overexpression in
LNCaP compared to control at CRPC-AR and CRPC-SCL peaks. ***P < 0.001
(permutation test). (C) Overexpression of FOSL1 in LNCaP cells shows

up-regulation of CRPC-SCL signature genes. (D) Effect of verteporfin on
MSKPCa2 (CRPC-AR) and MSKPCa3 (CRPC-SCL) cell growth. (E) Effect
of T-5224 on MSKPCa2 and MSKPCa3 cell growth. (F) YAP/TAZ activity (sum
of z-scores) is significantly higher in CRPC-SCL patients. ****P < 0.0001,
**P < 0.01 (one-tailed Wilcoxon rank-sum test, CRPC-SCL compared
to the other groups). (G) YAP/TAZ activity is negatively correlated with
AR expression across the 266 SU2C patients with Corr = –0.201 and
P < 0.001.
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of the CRPC-SCL group was validated by knock-
down and exogenous overexpression assays
followed by ATAC-seq, RNA-seq, and qPCR.
Lastly, we tested the effect of two compounds
on proliferation and downstream gene ex-
pression in both organoids and cell lines.
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Chromatin profiles classify castration-resistant prostate cancers suggesting
therapeutic targets
Fanying Tang, Duo Xu, Shangqian Wang, Chen Khuan Wong, Alexander Martinez-Fundichely, Cindy J. Lee, Sandra
Cohen, Jane Park, Corinne E. Hill, Kenneth Eng, Rohan Bareja, Teng Han, Eric Minwei Liu, Ann Palladino, Wei Di,
Dong Gao, Wassim Abida, Shaham Beg, Loredana Puca, Maximiliano Meneses, Elisa de Stanchina, Michael F. Berger,
Anuradha Gopalan, Lukas E. Dow, Juan Miguel Mosquera, Himisha Beltran, Cora N. Sternberg, Ping Chi, Howard I. Scher,
Andrea Sboner, Yu Chen, and Ekta Khurana

Science 376 (6596), eabe1505.  DOI: 10.1126/science.abe1505

Grouping prostate cancers
Therapeutic interventions are needed for prostate tumors that exhibit a loss of androgen receptor dependence in
castration-resistant prostate cancer (CRPC). However, there is a scarcity of prostate cancer cell line models. Tang
et al. performed a molecular study on a number of CRPC organoids, cell lines, and patient-derived xenographs
by combining sequencing techniques and transcriptomics to identify four distinct genetic subgroups of tumors.
Dominant transcription factors were identified for each subgroup, with a deeper analysis of subgroup 4 leading to the
identification of a chromatin-opening positive feedback loop. From these data, the authors propose that inhibitors of
the transcriptional coactivators YAP and TAZ may be used to treat individuals with subgroup 4–like tumors, the second
most common type of CRPC observed in this study. —LMZ
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